

Opening Statement on Coastal Hazards

Hearing of Te Tai o Poutini Plan. Variation 2 -Coastal Hazards

Cyprien Bosserelle

NIWA Taihoro Nukurangi

18/03/2025

Cyprien Bosserelle

Qualifications

- MSc. Geohazard and risk (2006). University of Montpellier, France
- PhD University of Western Australia (2013) Hydrodynamic and sand transport

Experience

- Coastal Scientist at ASR, Raglan (2007—2009)
- Coastal Scientist at Pacific Community, Fiji (2013–2017)
- Hydrodynamics scientist at NIWA, Christchurch (2017 present)

Expertise

- Coastal hazard monitoring and assessments
- Flood-inundation model & forecast development
- Tsunami hazard assessment

Coastal hazards

Tsunami or groundwater are treated separately

Coastal hazards worsen with sea-level rise

Sea level is rising on the West Coast

Historical rate: 2.7 mm/year Since 1980: 3.2 mm/year

Projected sea level rise

RCP: Representative Concentration Pathway SSP: Shared Socioeconomic Pathways Scenarios

M = Medium confidence = moderate polar ice sheet melt H+ = Low confidence = rapid polar ice sheet melt

Table 6: Summary of approximate year when absolute sea-level rise (SLR) heights could be reached using the recommended projections for a central location in Aotearoa New Zealand

SLR (metres)	Year achieved for SSP5-8.5 H+ (83rd percentile)	Year achieved for SSP5-8.5 (median)	Year achieved for SSP3-7.0 (median)	Year achieved for SSP2-4.5 (median)	Year achieved for SSP1-2.6 (median)
0.2	2035	2040	2045	2045	2050
0.3	2050	2055	2060	2060	2070
0.4	2055	2065	2070	2080	2090
0.5	2065	2075	2080	2090	2110
0.6	2070	2080	2090	2100	2130
0.7	2080	2090	2100	2115	2150
0.8	2085	2100	2110	2130	2180
0.9	2090	2105	2115	2140	2200
1.0	2095	2115	2125	2155	>2200
1.2	2105	2130	2140	2185	>2200
1.4	2115	2145	2160	>2200	>2200
1.6	2130	2160	2175	>2200	>2200
1.8	2140	2180	2200	>2200	>2200
2.0	2150	2195	>2200	>2200	>2200

Coastal hazards

Coastal erosion

- CHA 3: Hector, Ngakawau and Granity
- CHA 4: Orowaiti Lagoon
- CHA 12 and 13: Punakaiki Village (Pororari Beach) and Punakaiki River Beach
- CHA16: Rapahoe
- CHA 25: Haast Beach to Waiatoto
- CHA 26: Neils Beach to Jackson Bay

(all areas identified as priority in a prior analysis)

Coastal inundation

- Jackson Bay to Granity (Whole LiDAR coverage)
- Westport/orowaiti (not including Carter Beach)
 Using dynamic model

- Tsunami Hazard covered under GNS study
- No groundwater component

LiDAR record

Tonkin+Taylor reviewed draft report

- Review letter from T+T is based on draft report
- Overall, the review found the methodologies are appropriate
- Most of the comments are requests for clarifications
- Clarifications and modifications to the draft report were discussed with T+T in a meeting before finalizing the report
- Clarifications were added to the final report (released to the public) addresses all of T+T comments

Outputs

• Coastal inundation (Jackson Bay to Granity) 1 in 100 years coastal present Sea level; +0.2, +0.4, +0.6,+0.8, +1.0, +1.2 m SLR

• Coastal Erosion (only for CHA) 50-year and 100-year coastal erosion hazard zone estimates

Coastal severe overlays

Coastal alert overlay

Coastal erosion Methodology

Coastal erosion hazards

Coastal erosion: historical rates

Erosion hazard lines Landward extent limited to known hard/consolidated rocks

Accounting for existing coastal structures

- Accounted-for:
 - · Granity school
 - Orowaiti
 - Punakaiki
 - Okuru
 - Jackson Bay
- Not used for
 - Soft structures (likely to disappear; e.g. gravel bund)
 - Smaller structures = private seawall
 - Newer than 2020-2022 (e.g. Hannahs Clearing)

Structures do not remove the hazard

- Seawall can fail
- Typically designed to be "topped-up"

Coastal inundation Methodology

Coastal inundation hazards

Identify 100-year ARI Storm-tide + waves

- Linear relationship between MWHS and Extreme WL
- Wave setup associated with storm-tide is more complex:
 - No available joint-probability
 - Existing wave hindcast are too biased for extreme waves
 - Stephens et al. (2020) method produces unrealistically high wave setup
 - 0.8 m wave setup (5-6m swell at storm surge peak)
- SLR increment every 0.2m to 1.6m

Bathtub model vs dynamic model

Coastal inundation

"Bathtub" inundation

Climate, Freshwater & Ocean Science

Physics based model (hydrodynamics model)

Model area for dynamic model

How do we know the dynamic inundation model works?

Mean error = 0.01 m abs mean error 0.08 m (within measurement error)

Detailed results

Orowaiti erosion hazard

Punakaiki

Rapahoe

- 1876 - 1878
- **—** 1939
- **—** 1943
- 1948
- ---- 1950
- **—** 1951
- 1964 - 1965
- 1968 — 1968
- 1969
- 1970
- 1000
- 1988
- 2000
- 2003
- 2005 2006
- ___ 2007
- 2010
- ___ 2011
- -- 2012 -- 2013
- 2015
- ___ 2016
- ___ 2017
- ___ 2018
- ___ 2019
- ___ 2021

- -2.19 -1.79
- -1.79 -1.39
- -1.39 -1
- -1 -0.6 m/year
- -0.6 -0.2
 - -0.2 0.2
- 0.2 0.6
- 0.6 1
- 1 1.39
- 1.39 1.79
- 1.79 27.91

Haast erosion rates

Jackson Bay

VLM

Land elevation data

